Package: FactorAssumptions 2.0.1

FactorAssumptions: Set of Assumptions for Factor and Principal Component Analysis

Tests for Kaiser-Meyer-Olkin (KMO) and communalities in a dataset. It provides a final sample by removing variables in a iterable manner while keeping account of the variables that were removed in each step. It follows the best practices and assumptions according to Hair, Black, Babin & Anderson (2018, ISBN:9781473756540).

Authors:Jose Storopoli [aut, cre]

FactorAssumptions_2.0.1.tar.gz
FactorAssumptions_2.0.1.zip(r-4.5)FactorAssumptions_2.0.1.zip(r-4.4)FactorAssumptions_2.0.1.zip(r-4.3)
FactorAssumptions_2.0.1.tgz(r-4.4-any)FactorAssumptions_2.0.1.tgz(r-4.3-any)
FactorAssumptions_2.0.1.tar.gz(r-4.5-noble)FactorAssumptions_2.0.1.tar.gz(r-4.4-noble)
FactorAssumptions_2.0.1.tgz(r-4.4-emscripten)FactorAssumptions_2.0.1.tgz(r-4.3-emscripten)
FactorAssumptions.pdf |FactorAssumptions.html
FactorAssumptions/json (API)
NEWS

# Install 'FactorAssumptions' in R:
install.packages('FactorAssumptions', repos = c('https://storopoli.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/storopoli/factorassumptions/issues

On CRAN:

4.00 score 2 stars 8 scripts 218 downloads 3 exports 6 dependencies

Last updated 3 years agofrom:18115c73a4. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 09 2024
R-4.5-winOKNov 09 2024
R-4.5-linuxOKNov 09 2024
R-4.4-winOKNov 09 2024
R-4.4-macOKNov 09 2024
R-4.3-winOKNov 09 2024
R-4.3-macOKNov 09 2024

Exports:communalities_optimal_solutionkmokmo_optimal_solution

Dependencies:GPArotationlatticeMASSmnormtnlmepsych

How to use FactorAssumptions

Rendered fromvignette.Rmdusingknitr::rmarkdownon Nov 09 2024.

Last update: 2020-02-22
Started: 2019-07-17